SWITCHING P-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

The 2SJ600 is P-channel MOS Field Effect Transistor designed for solenoid, motor and lamp driver.

FEATURES

ORDERING INFORMATION

PART NUMBER	PACKAGE
$2 S J 600$	TO-251
$2 S J 600-Z$	TO-252

- Low on-state resistance:
$\operatorname{Rds}(o n) 1=50 \mathrm{~m} \Omega$ MAX. $(\mathrm{VGS}=-10 \mathrm{~V}, \mathrm{ID}=-13 \mathrm{~A})$
$\operatorname{Rds}(o n) 2=79 \mathrm{~m} \Omega$ MAX. $(\mathrm{VGs}=-4.0 \mathrm{~V}, \mathrm{ID}=-13 \mathrm{~A})$
- Low Ciss: Ciss $=1900$ pF TYP.
- Built-in gate protection diode
- TO-251/TO-252 package

Notes 1. PW $\leq 10 \mu \mathrm{~s}$, Duty cycle $\leq 1 \%$
2. Starting $\mathrm{T}_{\mathrm{ch}}=25^{\circ} \mathrm{C}, \mathrm{RG}_{\mathrm{G}}=25 \Omega$, $\mathrm{VGS}=-20 \mathrm{~V} \rightarrow 0 \mathrm{~V}$

[^0]ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Zero Gate Voltage Drain Current	Idss	V DS $=-60 \mathrm{~V}, \mathrm{VGS}=0 \mathrm{~V}$			-10	$\mu \mathrm{A}$	
Gate Leakage Current	Igss	$\mathrm{V}_{\mathrm{GS}}=\mp 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			¢10	$\mu \mathrm{A}$	
Gate Cut-off Voltage	$\mathrm{V}_{\mathrm{GS} \text { (off) }}$	$\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{ID}=-1 \mathrm{~mA}$	1.5	2.0	2.5	\checkmark	
Forward Transfer Admittance	\| yts		V DS $=-10 \mathrm{~V}, \mathrm{ld}=-13 \mathrm{~A}$	10	20		S
Drain to Source On-state Resistance	Rds(on)1	$\mathrm{VGS}=-10 \mathrm{~V}, \mathrm{ID}=-13 \mathrm{~A}$		41	50	$\mathrm{m} \Omega$	
	$\mathrm{Rds}(\mathrm{on}$)2	$\mathrm{VGS}_{\mathrm{GS}}=-4.0 \mathrm{~V}, \mathrm{ID}=-13 \mathrm{~A}$		55	79	$\mathrm{m} \Omega$	
Input Capacitance	Ciss	$\begin{aligned} & V_{D S}=-10 V, \\ & V G S=0 V, \\ & f=1 \mathrm{MHz} \end{aligned}$		1900		pF	
Output Capacitance	Coss			350		pF	
Reverse Transfer Capacitance	Crss			140		pF	
Turn-on Delay Time	toton)	$\left\{\begin{array}{l} \mathrm{ID}=-13 \mathrm{~A}, \\ \mathrm{~V}_{\mathrm{GS}(\mathrm{On})}=-10 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{DD}}=-30 \mathrm{~V}, \\ \mathrm{RG}_{\mathrm{G}}=0 \Omega \end{array}\right.$		9		ns	
Rise Time	tr			10		ns	
Turn-off Delay Time	tdo(ff)			67		ns	
Fall Time	tf			19		ns	
Total Gate Charge	QG	$\begin{aligned} & \mathrm{ID}=-25 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{DD}}=-48 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \end{aligned}$		38		nC	
Gate to Source Charge	Qas			7		nC	
Gate to Drain Charge	Qgi			10		nC	
Body Diode Forward Voltage	$\mathrm{V}_{\mathrm{F}(\mathrm{S}-\mathrm{D})}$	$\mathrm{I}_{\mathrm{F}}=-25 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		1.0		V	
Reverse Recovery Time	tr	$\begin{aligned} & \mathrm{IF}=-25 \mathrm{~A}, \mathrm{VGS}=0 \mathrm{~V} \\ & \mathrm{di} / \mathrm{dt}=-100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		49		ns	
Reverse Recovery Charge	Qrr			100		nC	

TEST CIRCUIT 1 AVALANCHE CAPABILITY

TEST CIRCUIT 2 SWITCHING TIME

Duty Cycle $\leq 1 \%$

TEST CIRCUIT 3 GATE CHARGE

PACKAGE DRAWINGS (Unit : mm)

1) TO-251 (MP-3)

2) TO-252 (MP-3Z)

EQUIVALENT CIRCUIT

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

