

MOS FIELD EFFECT TRANSISTOR **2SJ600**

SWITCHING P-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

The 2SJ600 is P-channel MOS Field Effect Transistor designed for solenoid, motor and lamp driver.

FEATURES

- Low on-state resistance: $R_{DS(on)1} = 50 \text{ m}\Omega \text{ MAX}. \text{ (Vgs} = -10 \text{ V}, \text{ Id} = -13 \text{ A})$ $R_{DS(on)2} = 79 \text{ m}\Omega \text{ MAX}. \text{ (Vgs} = -4.0 \text{ V}, \text{ Id} = -13 \text{ A})$
- Low Ciss: Ciss = 1900 pF TYP.
- Built-in gate protection diode
- TO-251/TO-252 package

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage (Vgs = 0 V)	VDSS	-60	V
Gate to Source Voltage (VDS = 0 V)	Vgss	∓20	V
Drain Current (DC) (Tc = 25°C)	D(DC)	∓25	А
Drain Current (pulse) Note1	D(pulse)	7 70	А
Total Power Dissipation ($Tc = 25^{\circ}C$)	P⊤	45	W
Total Power Dissipation (T _A = 25°C)	P⊤	1.0	W
Channel Temperature	Tch	150	°C
Storage Temperature	Tstg	–55 to +150	°C
Single Avalanche Current Note2	las	-25	А
Single Avalanche Energy Note2	Eas	62.5	mJ

ORDERING INFORMATION

PART NUMBER	PACKAGE
2SJ600	TO-251
2SJ600-Z	TO-252

(TO-251)

(TO-252)

Notes 1. $PW \le 10 \ \mu s$, Duty cycle $\le 1\%$

2. Starting $T_{ch} = 25^{\circ}C$, $R_G = 25 \Omega$, $V_{GS} = -20 V \rightarrow 0 V$

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ELECTRICAL CHARACTERISTICS (TA = 25°C)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -60 V, V_{GS} = 0 V$			-10	μA
Gate Leakage Current	lgss	$V_{GS} = \overline{+}20 V$, $V_{DS} = 0 V$			∓ 10	μA
Gate Cut-off Voltage	VGS(off)	$V_{DS} = -10 V$, $I_{D} = -1 mA$	1.5	2.0	2.5	V
Forward Transfer Admittance	y _{fs}	$V_{DS} = -10 V$, $I_{D} = -13 A$	10	20		s
Drain to Source On-state Resistance	RDS(on)1	$V_{GS} = -10 V$, $I_D = -13 A$		41	50	mΩ
	RDS(on)2	$V_{GS} = -4.0 \text{ V}, \text{ Id} = -13 \text{ A}$		55	79	mΩ
Input Capacitance	Ciss	$V_{DS} = -10 V$,		1900		pF
Output Capacitance	Coss	Vgs = 0 V,		350		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		140		pF
Turn-on Delay Time	td(on)	ID = -13 A,		9		ns
Rise Time	tr	$V_{GS(on)} = -10 V$,		10		ns
Turn-off Delay Time	td(off)	$V_{DD} = -30 V$,		67		ns
Fall Time	tr	$R_G = 0 \Omega$		19		ns
Total Gate Charge	Q _G	$I_{D} = -25 A,$		38		nC
Gate to Source Charge	Q _{GS}	$V_{DD}=-48 V$,		7		nC
Gate to Drain Charge	Qgd	V _{GS} = -10 V		10		nC
Body Diode Forward Voltage	VF(S-D)	IF = -25 A, VGS = 0 V		1.0		V
Reverse Recovery Time	trr	IF = -25 A, VGS = 0 V		49		ns
Reverse Recovery Charge	Qrr	di/dt = $-100 \text{ A}/\mu \text{s}$		100		nC

TEST CIRCUIT 1 AVALANCHE CAPABILITY

TEST CIRCUIT 2 SWITCHING TIME

TEST CIRCUIT 3 GATE CHARGE

PACKAGE DRAWINGS (Unit : mm)

1) TO-251 (MP-3)

EQUIVALENT CIRCUIT

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.